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ABSTRACT

In many applications involving quantization the probability distribu-
tion of the input signal is unknown. However, most of the algorithms for
optimal scalar or vector quantization require an explicit distribution
function or probability density. This paper shows that under certain
conditions reasonable quantizer designs can be expected when standard
algorithms are applied to estimates of distribution functions.

I. INTRODUCTION

Much work has been expended in studying algorithms for optimal quanti-
zation of a known probability distribution [1-5j. In practice, however,
the statistical description of the source is rarely known precisely. In
some recent papers [2,3] a group of researchers demonstrated both theoreti-
cally and experimentally that a training sequence of independent or ergodic
samples can be used to design near optimal vector quantizers, by using the
sample empirical distribution in place of the unknown input distribution in
a generalized version of Lloyd's Method I I1]. They showed that under some
conditions the quantizer designed for a "long" training sequence approxi-
mates closely the output levels and performance of the optimal quantizer
for the true (unknown' distribution. The same kind of reasoning should
hold for any design algorithm. If the input distribution F is not known,
then we can form an estimate Pn based on n observations of the input
signal. As n becomes large, we expect a reasonable estimate to converge to
the true distribution F. Intuitively, then, an optimal quantizer designed
for Fn, and the resulting cistortion, should closely approximate those of an
optimal quantizer for F. In this paper we will establish properties of an
estimator Fn so that this kind of reasoning will be valid.

II. DEVELOPMENT
k k

An N-level k-dimensional vector quantizer is a mapping Q: IR -)IR which
assigns to the input vector x an output vector Q(x) chosen from a finite
set of N vectors {yi: yie ]Rk,i=l,2,..,N} - The distortion incurred in
quantizing a k dimensional random variable X having a probability distribu-
tion function F is expressed by

D(Q,F) = fCo(Ix-Q(x)II)dF(x) (1)

where 1I. flis the usual Euclidean norm on IRk and where all integrals,

unless noted otherwise, are over I k. We will take the cost function Co(t)

to be nonnegative, nondecreasing on [0,-) and lower semi-continuous. It
has been shown previously that optimal quantizers minimizing (1) exist for
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-2-
all probability distributions F and all k and N [6,7]. This type of distor-
tion function subsumes most of the popular error criteria used in scalar and
vector quantization. When optimal quantizers are being considered, there is
no loss of generality in assuming the "nearest neighbor" assignment rule:
Q(x) is that member of the set which is nearest to x in Euclidean norm, with
ties being broken by an arbitrary preassigned method. This rule will be
adopted throughout the rest of the paper. Thus a quantizer is completely
represented by its set of output vectors.

We will say that a sequence of N-level quantizers {Qn} converges
weakly to the quantizer Q if Qn(x) -Q(x) at all continuity points x of Q.

Let Fn and F be k-variate probability distribution functions. The

sequence {Fnj is said to converge weakly to F (written Fn w F) if Fn(x)

F(x) at every continuity point x of F. We say that Fn } converges setwise

to F (denoted Fn - F) if

lir f dFn(X)= dF(x)
n -co B k

for every Borel subset B of IR
The following theorem from (8] and [9] is the main tool used in the

investigation. Here k and N are fixed positive integers.
Theorem 1: Assume that Co(t) is nonnegative and nondecreasing on [0,-).

Suppose that Co((Ix-yI) is uniformly integrable with respect to a sequence

of distribution functions {Fnl for every y. Let Qn be an optimal N-level

quantizer for Fn. If either (a) Co(t) is continuous and Fn- F; or

(b) C0 (t) is lower semicontinuous and FnSoF, then every convergent subse-

quence of (Qn} converges weakly to an optimal quantizer for F. Such a sub-
sequence exists unless C0(Ijxll) is constant with F-probability 1. More-

over, D(Qn,F n ) converges to the optimal mean distortion for quantizing F
with N levels.

In Theorem 1, convergence of the sequence of optimal quantizers {Q d
cannot be asserted. However, {Qn can be completely partitioned into
convergent subsequences whose limits are optimal quantizers for F.

In Theorem 1, Fn can be any sequence of distribution functions. We

are interested in having Fn be an estimate Fn constructed from n observa-
tions of F. The principal consideration in applying the theorem is in
showing uniform integrability. For sequences of estimates this becomes

lir fC0 (jx-yjj)d n(x) = fCo(lix-YII)dF(x) (2)

for each yelRk; for almost all training sequences. Before proceeding
further, we make a useful simplification of (2). This equation requires us
to find a set of sample sequences (Xl1,X2,...) on which the integrals

converge for every y in IRk. What we will be using primarily is the Strong
Law of Large Numbers, which yields the conclusion:

lir fc(Ilx-y~l)d^n(x) = fC0 (tjx-ytI)dF(x) (3)
n - o

for almost all training sequences; for each yeRk. This last equation says
that for a given y, there is a set A(y) of sample sequences (XX2,...)
having probability one for which the integrals converge. Obviously, (2)
implies (3). However, it is shown in the Appendix that (3) implies (2).
Thus (2) and (3) are equivalent. Hence if we can show (3), we may use
Theorem I to get the results we want. In the following examples, we will

* " %#~* * * * ~ 7 *. N .



-3-
show how this can be done in a number of situations.

Empirical Distributions. Let F be the unknown k-variate distribution
which we wish to (vector) quantize. If we take n independent samples XI,X 2,

.Xn then the empirical distribution function is Fn(x) = n- (#X1<x).
where the inequality is taken component by component. This is a simple
nonparametric estimator which by the Strong Law of Large Numbers converges
setwise to F for almost all sample sequences as n -o. Take C0 to be
nonnegative, nondecreasing, nonconstant with respect to F, and lower semi-
continuous. The demonstration of uniform integrability (3) is a simple
application of the Strong Law of Large Numbers. We have for each y

lim fC0 (jx-y,,,dn(x) = fC0(jjx-yfj)dF wpl,
n -a

provided that the~last integral is finite. According to Theorem 1, then, we
may quantize the Fn's, using any available method that yields an optimal
solution and be assured that the resulting quantizers Qn converge weakly to
an optimal quantizer for F. This generalizes the analysis of [2,3] to other
algorithms besides the extension of Lloyd's Method I. Instead of assuming
the training set to consist of independent samples, we may make an ergodic
(or block ergodic) assumption. This seems to be a useful assumption
regarding information sources. In the development, the Strong Law of Large
Numbers can be replaced by an ergodic theorem (10] and all of the
conclusions reached above will remain valid.

For the rest of the paper, we will restrict our attention to distribu-
tions having a density, which we denote by f. Also, except for a portion
of the last example, we will specialize to r-th power distortions, which
have been widely used and studied. In this case, a natural procedure would
be to use some density estimator ?n based on a training sample XX2,... in
the quantization algorithm. Then (3) becomes

lim f - fn(x)dx = Ilx-yllrf(x)dx (4)
n n

for ̂ almost all training sequences; for each yemk. This equation says that
if fn and f are to behave in almost the same manner using r-th power
quantizers, then they should have nearly the same r-th moments about
arbitrary points y. Viewed differently, the quantity

Jjx-Ylr fn(x)dx
is an estimator of the r-th moment about y of the density f. Theorem 1
requires this estimator to be strongly consistent, i.e., to converge almost
surely to the true moment of f. In addition, of course, we want the
distribution associated with ?n to converge weakly to the distribution of
f. This is satisfied if we have

lim fn(X) =f(x) (5)

for almost all x; for almost all training sequences. The discussion thus
far can be summarized by saying that an estimator ?n based on samples can
be used in a quantizer design algorithm in place of f if it satisfies the
strong consistency conditions (4) and (5). The examples below illustrate
this point.

Normal densities. Consider that the density f to be quantized is
univariate normal with unknown mean V and variance a2 >0. LetjK(x) denote
the standard normal density. Then we may write f(x) =st((x-u)/o)/o. Let
XIX2,... be independent, identically distributed samples from f. Strongly

consistent estimates of the unknown parameters v and a2 are, respectively,

S * * - S
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the sample mean and variance, n and a0. Let fn be a normal density with

these parameters. This has the strong consistency property (5). Next we
will show (4). By a change of variablei l~~~x_y jr^nXd ~X+ n -y rA(x )dx.

Upon applying the cr inequality [11, p.157] we have

n yr <- ar Ixjr c n _yjr.
l~nx +ln .crlI lx +crIli~n

By the strong consistency of the estimators,
rnrxr  Pnyr,)o(X)dx = f(crarlxl r  11_ylr),( x)dx wpl.

n )oo r
Thus (4) follows upon invoking a generalized Dominated Convergence Theorem
[12, p.89].

The family of normal densities in this example can be replaced with
any class of almost everywhere continuous densities parametrized by location
and/or scale parameters. We may contemplate other instances in which the
unknown parameter is neither a location nor scale parameter, but where the
above analysis can be useful. For instance, the exponent p in the general-

ized Gaussian density f(x) = K exp(-ylxIp) can be varied to fit many
histograms. P

In some situations it might be more appropriate to use a nonparametric
density estimator. A popular type of estimator is the kernel density esti-
mator introduced by Parzen [13] for univariate densities and generalized to
multivariate densities by later authors: fn(x)=-n- 1 hk

kernel K(x) is a probability density function on IRk and thn} is a sequence
of numbers decreasing to zero. Nadaraya [14] shows for the univariate case
that if

f(x) is a uniformly continuous density,

K(x) has bounded variation, and (6)
CO 2

- exp(-y nhn) converges for every y >O,
n=l

then f n(x) -f(x) uniformly with probability one. The extensions of the

result to several dimensions use slightly different sets of assumptions.
We give the result of Moore and Yackel [15] as a typical example. If

f(x) is a uniformly continuous density on IRk,

K(x) is a bounded density on IRk ()
K(x) has bounded variation, and

n hk /log n-- as n -,

then fn(x)-*f(x) uniformly with probability one.

Assuming that (6) or (7) holds, the distribution of fn converges

setwise .to that of f. In addition, K and {hn } should be chosen appropri-

ately so that (4) is satisfied. Two examples are given below. The first
is for scalar quantization and the second for vector quantization.

Compact support. Assume that the unknown density f has compact
support which we may take without loss of generality to be contained in

, -
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(-1,1]) and is uniformly continuous on the real line. We wish to quantize
this optimally using a cost function C0 which is nonnegative, nondecreasing

and lower semicontinuous, so we also assume that fCo(Ix-yj) K(x)dx < - for

all y. For convenience we take the kernel to be symmetric and unimodal, so
it decreases away from the origin. Consider

Co(Ix-yl)f (x)dx S-< 2 >C°(x-y )J Kt dx wpl.

lx a n x>a n n
After a change of variable and simplification, we have

f C(1x-Y)fn(x)dx < 2 fCo( hlX + l-y ) Klx)dx wpl.
lxi >a x > a/h1 l

It follows that Co(jx-yj) is uniformly integrable with respect to {fn(x)},

wpl. Therefore the kernel estimator is a viable basis for designing a
scalar quantizer for a density with compact support.

Noncompact support. We can extend the previous analysis to miltivari-
ate densities with unbounded support if we restrict attention to r-th power
quantizers. A bounded continuous density f(x) whose tails go to 0 as
j xlj- - is uniformly continuous, so none of the common densities are
excluded by the assumption (7). Let the cost function be C0 (t) =tr where

temporarily r =2p is an even integer. We will also make the natural
assumptions that Jjx(j has finite (2p)-th moments with respect to both
densities f and K. Our immediate goal is to show (4) for r =2p. By the
cr-inequality [11, p.157] we haver),, I I  )";'

2'k n 2 x - ki 2x-yl2pIn(X) < C I n (x(J)-y (j ) K(= )h (8)
j=l i=l n

where the superscript denotes the j-th component of the k-dimensional
vector. Note that the right-hand side converges pointwise as n -- to

" p k (x(j)_y(j))2p f(x).

If the right-hand side of (8) were integrated, we get k terms, a typical
one of which looks like the following if we ignore the constant cp

M. n1n [hnx +x2J.y p PK(x)dx.
mj,n= Yfk xj+ ij j)

i=l ki

We can use the binomial theorem to expand the last integrand. After
rearranging the sums we get

1j n )~f~ 2p +2p-2l h2-
m =I X=-y +

jn i= f=o

The terms in the summation from t=O to t =2p-1 are all multiplied by a
power of hn, which decreases to 0, so that in the limit, the second group

of terms above is zero. Using the Strong Law of Large Numbers on the
first term gives

lim m. = I (x(J)-y(J)) f(x)dx wpl.
".n -oo .n..k
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This is true for all j in (8). Therefore

Slim Cp f~ cxJ-~ Inxd =/Cpd wpl

n oo =l
Since" " ^xy2 Pfn(X) converges to 12x-yII2Pf(x) wpl, we may use a general-

ization of the Dominated Convergence Theorem [12, p.89] to conclude that (4)
holds for r=2p. Therefore we have uniform integrability for the cost func-
tion with r an even integer. In general, for any positive r, we can let 2p
be the smallest even integer for which r<2p. Then the above implies that
[16, p.252]

lirfllx-Yllrfn(x)dx = llx-Yllrf(x)dx wpl. (9)

Thus the kernel estimator fn can be used to design a quantizer for f.

Another extension of the analysis is possible. Consider a cost func-
tion C0 (t) which grows polynomially fast, i.e., there exist u, $ and r so
that

0 < Co(t) < t+. (10)

Since

lim Co(llx-yII)fn(x) -- Co(Ix-yll)f(x) wpl,
(9) and (10) imply, through the generalization of the Dominated Convergence

Theorem [12, p.89], that

lir C0 (11x-yII)fn(x)dx = 1C(1 x-yIj)f(x)dx wpl.

So if C0 is nondecreasing and lower semicontinuous, then Theorem 1 also

applies, and fn can be used to design a quantizer with the cost function
CO. Eq. (10) is equivalent to having a X >0 so that

C0(2t) < XC0 (t) for all t. (11)

This is a useful form for a cost function because (11) and fCo(11x11)dF <oo

imply that 1Co(Ijx-yII)dF < - for all vectors y.

As an application of this example, consider Max's algorithm [4] (also
called Lloyd's Method II [1) or the Lloyd-Max algorithm). Some aspects of
this algorithm were mentioned earlier, and we noted that as it has been
described in the literature, the algorithm requires the existence of a
known density function. It does not seem to be readily adapted for
quantizing an empirical distribution function. However, with the approach
outlined in this paper, it is possible to use density estimates as the
input to Max's algorithm and get strongly consistent estimates of the
optimal output levels and breakpoints. Thus the algorithm can be
(indirectly) driven by a training sequence of independent observations.

APPENDIX

In this appendix we show that (3) implies (2). Eq. (3) says that for

a given yeRk , there is a set A(y) of sample sequences (X1,X2,...) having

probability one for which the integrals converge. Since IRk is separable,
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it is possible to find a dense and countable set {yj} for which this

convergence holds with probability one. In fact, for any countable subset

of IRk,

A = r) A(yj)
j=l

is a set of probability one. Now, for a given y in (2), we may find a
finite subset A of the yj's so that

| Co(11x-yll) I CO( 11x-yj 11 .
y jeA

This involves constructing a cube around y and picking the yj outside the

cube so that lx-yjj < S1x-yj 1 for at least one yj. Then

sup f C( I x-y II ) dFn(x)
n 11x >a

< sup Co( x-yj 11)dFn(x).
yjeA n x 11> a

d3

For each yj and each sample sequence in A, the right-hand side can be made

arbitrarily small by appropriately choosing a. Therefore C0(I1x-yII) is
uniformly integrable for every y, with respect to every {F n } arising from

the set A. This is equivalent to (2). Therefore, (3) implies (2).
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